Application of modified Leja sequences to polynomial interpolation

نویسندگان

  • L. P. Bos
  • M. Caliari
چکیده

We discuss several applications of the Leja point method for univariate polynomial interpolation. First we show how more or less arbitrary interpolation points sets can be stabilized by adding some points from the Leja sequence generated beginning with the given set. We then show how the Leja point idea can be used to generate good point sets for Hermite–Lagrange polynomial interpolation. Then we discuss a version of Leja sequences for the interval [−1,1] that are constrained to be symmetric sets. Finally we discuss the extension of Leja stabilization to several variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New bounds on the Lebesgue constants of Leja sequences on the unit disc and their projections R-Leja sequences

Motivated by the development of non-intrusive interpolation methods for parametric PDE’s in high dimension, we have introduced in [8] a sparse multi-variate polynomial interpolation procedure based on the Smolyak formula. The evaluation points lie in an infinite grid ⊗j=0Z where Z = (zj)j≥0 is any infinite sequence of mutually distinct points in some compact X in R or C. A key aspect of the int...

متن کامل

The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential

The Leja method is a polynomial interpolation procedure that can be used to compute matrix functions. In particular, computing the action of the matrix exponential on a given vector is a typical application. This quantity is required, e.g., in exponential integrators. The Leja method essentially depends on three parameters: the scaling parameter, the location of the interpolation points, and th...

متن کامل

Newton Interpolation with Extremely High Degrees by Leja Ordering and Fast Leja Points

In this paper we perform a numerical study of Newton polynomial interpolation. We explore the Leja ordering of Chebyshev knots and the Fast Leja knots introduced by Reichel. In all previous publications we are aware of, the degree of interpolation polynomials in use is in the order of a few hundreds. We show that it is possible to employ degrees of up to one million or higher without a numerica...

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

A massively parallel exponential integrator for advection-diffusion models

This work considers the Real Leja Points Method (ReLPM), [M. Caliari, M. Vianello, L. Bergamaschi, Interpolating discrete advection-diffusion propagators at spectral Leja sequences, J. Comput. Appl. Math. 172 (2004) 79–99], for the exponential integration of large-scale sparse systems of ODEs, generated by Finite Element or Finite Difference discretizations of 3-D advection-diffusion models. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015